
Contracts for Density and Packing Functions

Jacob Skitsko

University of Waterloo, Waterloo, ON, Canada

jskitsko@uwaterloo.ca

August 1st, 2024

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 1 / 17

Contracts for Density and Packing Functions

Introduction to the Contract Theory Problem.

Graph based “density” reward function.

Hypergraph based “packing” reward functions.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 2 / 17

Contracts for Density and Packing Functions

Introduction to the Contract Theory Problem.

Graph based “density” reward function.

Hypergraph based “packing” reward functions.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 2 / 17

Contracts for Density and Packing Functions

Introduction to the Contract Theory Problem.
(maximizing a particular set function)

Graph based “density” reward function.

Hypergraph based “packing” reward functions.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 2 / 17

Contracts for Density and Packing Functions

Introduction to the Contract Theory Problem.
(maximizing a particular set function)

Graph based “density” reward function.

Hypergraph based “packing” reward functions.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 2 / 17

Contracts for Density and Packing Functions

Introduction to the Contract Theory Problem.
(maximizing a particular set function)

Graph based “density” reward function.

Hypergraph based “packing” reward functions.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 2 / 17

Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).
Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 3 / 17

Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).

Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 3 / 17

Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).
Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 3 / 17

Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).
Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 3 / 17

Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).
Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 3 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17

Introduction to the Contract Theory Problem

Each agent i ∈ [n] takes action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

We can incentivize exactly the set S ⊆ [n] to take actions with transfers t:

ti =

{
0 i /∈ S

ci
f (S)−f (S\{i}) i ∈ S

So our optimal contract problem becomes finding a set S ⊆ [n] that
maximizes: (

1−
∑
i∈S

ci
f (S)− f (S \ {i})

)
· f (S)

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 5 / 17

Introduction to the Contract Theory Problem

Each agent i ∈ [n] takes action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

We can incentivize exactly the set S ⊆ [n] to take actions with transfers t:

ti =

{
0 i /∈ S

ci
f (S)−f (S\{i}) i ∈ S

So our optimal contract problem becomes finding a set S ⊆ [n] that
maximizes: (

1−
∑
i∈S

ci
f (S)− f (S \ {i})

)
· f (S)

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 5 / 17

Introduction to the Contract Theory Problem

Each agent i ∈ [n] takes action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

We can incentivize exactly the set S ⊆ [n] to take actions with transfers t:

ti =

{
0 i /∈ S

ci
f (S)−f (S\{i}) i ∈ S

So our optimal contract problem becomes finding a set S ⊆ [n] that
maximizes: (

1−
∑
i∈S

ci
f (S)− f (S \ {i})

)
· f (S)

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 5 / 17

Introduction to the Contract Theory Problem

Each agent i ∈ [n] takes action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

We can incentivize exactly the set S ⊆ [n] to take actions with transfers t:

ti =

{
0 i /∈ S

ci
f (S)−f (S\{i}) i ∈ S

So our optimal contract problem becomes finding a set S ⊆ [n] that
maximizes: (

1−
∑
i∈S

ci
f (S)− f (S \ {i})

)
· f (S)

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 5 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize

Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize(
1−

∑
i∈S

ci ·
(n
2

)
degS(i)

)
· |E (S)|(n

2

)

Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)

Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Let’s consider 2 quick examples where ci = 1 for all i ∈ V :

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 6 / 17

Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)

Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 7 / 17

Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 7 / 17

Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.

Open Question ([DCVDPP24])

Is there an additive PTAS in the general costs case?

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 7 / 17

Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.

Theorem ([PS24])

There is an additive PTAS in the general costs case!

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 7 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)

Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.

Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 8 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

· xv

subject to
∑
v∈H

·xv ≥∑
u∈N(v)

xu ≥ for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)} .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)} .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)} .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)} .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)} .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 9 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|

∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)}.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 10 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)
min

{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|

∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)}.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 10 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|

∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)}.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 10 / 17

Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

c

degS ′(v)
· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′)|

∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where H = {v ∈ V : degS ′(v) = Ω(n)}.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 10 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)

First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),

degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and

(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)
First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 11 / 17

Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!

∑
u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and
degS′(v) = o(n) vertices will get concentration bounds.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 12 / 17

Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!∑

u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and
degS′(v) = o(n) vertices will get concentration bounds.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 12 / 17

Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!∑

u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and
degS′(v) = o(n) vertices will get concentration bounds.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 12 / 17

Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!∑

u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and

degS′(v) = o(n) vertices will get concentration bounds.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 12 / 17

Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!∑

u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and
degS′(v) = o(n) vertices will get concentration bounds.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 12 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.

Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).

Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).

Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

Let’s describe our approach more concretely.
Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C).

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 13 / 17

Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 14 / 17

Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 14 / 17

Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 14 / 17

Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 14 / 17

Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 14 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)

all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 15 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.

e.g. f (S) = |E (S)|/
(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 16 / 17

Sanjeev Arora, David Karger, and Marek Karpinski.
Polynomial time approximation schemes for dense instances of np-hard
problems.
In Proceedings of the twenty-seventh annual ACM symposium on
Theory of computing, pages 284–293, 1995.

Ramiro Deo-Campo Vuong, Shaddin Dughmi, Neel Patel, and Aditya
Prasad.
On supermodular contracts and dense subgraphs.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 109–132. SIAM, 2024.

Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim.
Multi-agent contracts.
In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pages 1311–1324, 2023.

Constantinos Daskalakis and Christos H Papadimitriou.
On oblivious ptas’s for nash equilibrium.
In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 75–84, 2009.

Tomer Ezra, Michal Feldman, and Maya Schlesinger.
On the (in) approximability of combinatorial contracts.
In 15th Innovations in Theoretical Computer Science Conference
(ITCS 2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 17 / 17

	Supermodular Functions
	Packing Functions

