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Introduction to the Contract Theory Problem

We have a team of agents {1, . . . , n} who can each make a costly action.

If a subset of agents S ⊆ [n] takes actions, then we receive reward f (S).
Notice each agent taking an action incurs a cost but receives no reward.

We need to transfer reward to the agents for them to take their actions.

However, in contract theory problems we see only the outcome f (S) and
not the actions the agents take!
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Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Let’s consider how the interaction goes.

We decide on some transfers t, and this is known to everyone.

Each agent i ∈ [n] takes action at cost ci or does nothing at cost 0.

This results in a set of agents S ⊆ [n] taking actions.

We see the reward f (S), but not S .

We transfer ti · f (S) to each agent i ∈ [n].

So each agent i ∈ [n] wants to take their action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 4 / 17



Introduction to the Contract Theory Problem

Each agent i ∈ [n] takes action iff

Eaction

[
ti · f (S ∪ {i})

]
− ci ≥ Enothing

[
ti · f (S \ {i})

]
− 0 .

We can incentivize exactly the set S ⊆ [n] to take actions with transfers t:

ti =

{
0 i /∈ S

ci
f (S)−f (S\{i}) i ∈ S

So our optimal contract problem becomes finding a set S ⊆ [n] that
maximizes: (

1−
∑
i∈S

ci
f (S)− f (S \ {i})

)
· f (S)
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Graph Supermodular Functions [DCVDPP24]

Given a graph G = (V ,E ) consider f (S) = |E(S)|
(n2)

and costs ci for i ∈ V .

Then we aim to maximize

Let’s consider 2 quick examples where ci = 1 for all i ∈ V :
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Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)

Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.
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Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.
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Jacob Skitsko (UWaterloo) Contract Theory August 1st, 2024 7 / 17



Graph Supermodular Functions [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S
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degS(i)

)
· |E (S)|(n

2

)
Theorem ([DCVDPP24])

In the identical costs special case there is no multiplicative approximation
or additive FPTAS, unless P=NP. But, there is an additive PTAS.

Theorem ([PS24])

There is an additive PTAS in the general costs case!
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Previous Approach for Identical Costs [DCVDPP24]

Recall we want to maximize(
1−

∑
i∈S

c

degS(i)

)
· |E (S)|(n

2

)

Get inspiration from approximations for dense problems [AKK95].

Show there exists approximately optimal set S ′ with

|S ′| = Ω(n), and degS ′(i) = Ω(n) for all i ∈ S ′

Obtain accurate estimates for degS ′(i) when degS ′(i) = Ω(n) using
oblivious sampling [DP09].

Make an LP formulation using degS ′(i) for {i ∈ V : degS ′(i) = Ω(n)}.
Randomly round the LP.
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Previous Approach for Identical Costs [DCVDPP24]

The LP formulation is essentially of the form:

min
{xv}v∈V

∑
v∈H

· xv

subject to
∑
v∈H

·xv ≥∑
u∈N(v)

xu ≥ for all v ∈ H

xv = 0 for all v /∈ H

0 ≤ xv ≤ 1 for all v ∈ V

where .
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Issues in the General Cost Setting

Recall we want to maximize(
1−

∑
i∈S

ci
degS(i)

)
· |E (S)|(n

2

)

First issue: there can be vertices in approximately optimal solutions
with o(n) degree but also low cost.

We show there is an approximately optimal set S ′ where:

Ω(n) vertices of S ′ have degS′(i) = Ω(n),
degS′(i) = Ω(n/ log log n) or ci ≤ ϵ/n for all i ∈ S ′, and
(degS′(i))2/ci = Ω(n2) for all i ∈ S ′.
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Issues in the General Cost Setting

Second issue: Sampling techniques only gives estimates for vertices
with degree Ω(n) but LP formulation requires us to know which
vertices have high degree and what their approximate degrees are!

∑
u∈N(v)

xu ≥ degS ′(v) = Ω(n)

vs.∑
u∈N(v)

xu ≥ Ω(n/ log log n) · xv

We describe a new rounding procedure which:

maintains approximate feasibility for all constraints, and
degS′(v) = o(n) vertices will get concentration bounds.
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Our Approach in the General Cost Setting

Let’s describe our approach more concretely.

Recall [DCVDPP24] partitioned V into H,V \ H where

H = {v ∈ V : degS ′(v) ≥ σ · n = Ω(n)} .

We partition V into A,B,C ,D.

Vertices in A might be included, and have degree ≥ σ · n = Ω(n).
Note we know degS ′(v) for v ∈ A.

Vertices in B might be included, and have degree < σ · n but could
still have degree Ω(n/ log log n).
Note we do not know degS ′(v) for v ∈ B.

Vertices in C are always included. They have cost ≤ ε/n.

Do not include D (which is everything not in A,B,C ).
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Our Approach in the General Cost Setting

We can then make an LP which essentially looks like:

min
{xv}v∈V

∑
v∈A

cv
degS ′(v)

· xv

subject to
∑
v∈H

degS ′(v) · xv ≥ 2 · |E (S ′ ∩ H)|∑
u∈N(v)

xu ≥ degS ′(v) for all v ∈ A

for all v ∈ B

xv = 1 for all v ∈ C

xv = 0 for all v ∈ D

0 ≤ xv ≤ 1 for all v ∈ V .
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Our Approach in the General Cost Setting

Let’s summarize our approach:

We find the existence of a structured approximately optimal solution
S ′ with:

many high degree vertices,
i.e. Ω(n) vertices with degree Ω(n)
all vertices have sufficiently high degree or are cheap.
i.e. all vertices have degree Ω(n/ log log n) or cost ≤ ε/n

We sample to find the degrees of the high degree vertices.

We describe an LP which is (more or less) a relaxation of our problem.

We obtain an (approximately) feasible optimal solution to the LP
which can be randomly rounded to an approximately optimal solution
for our original problem.
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Generalizing Previous work for Packing Functions
[DEFK23]

Previous work [DEFK23] obtained a constant approximation for XOS
functions, and showed there is no PTAS (so did [EFS24]).

XOS functions “look like rank 1 max hypergraph matching”.

We generalize these approximations to functions that “look like max
hypergraph matching”.

We extend approximations to MPH-k functions which satisfy a
packing constraint.

Without constraints the problem is hard.
e.g. f (S) = |E (S)|/

(n
2

)
is an MPH-2 function.
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